منابع مشابه
A Note on Gorenstein Flat Dimension
Unlike the Gorenstein projective and injective dimensions, the majority of results on the Gorenstein flat dimension have been established only over Noetherian (or coherent) rings. Naturally, one would like to generalize these results to any associative ring. In this direction, we show that the Gorenstein flat dimension is a refinement of the classical flat dimension over any ring; and we invest...
متن کاملGorenstein flat and Gorenstein injective dimensions of simple modules
Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...
متن کاملGorenstein Dimension of Modules
R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...
متن کاملGorenstein Flat and Gorenstein Injective Dimensions of Simple Modules
Let R be a right GF -closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorenstein ring R, the G...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2009
ISSN: 2156-2261
DOI: 10.1215/kjm/1265899484